Support for this work is provided by a grant from the National Institutes of Health.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands. Gorelik, A. M., Reznichenko, A. V., Andronova, N. A. \& Luk'yanets, E. A. (1983). J. Org. Chem. USSR, 19, 183-189.
Gupta, M. P. \& SAhU, M. (1972). Z. Kristallogr. 135, 262-272.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Schweizer, W. B., Procter, G., Kaftory, M. \& Dunitz, J. D. (1978). Helv. Chim. Acta, 61, 2783-2808.

Acta Cryst. (1989). C45, 1258-1260

Structure of Leuconolam Sesquihydrate

By Wolfgang Hiller and Klaus Wurst
 Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Federal Republic of Germany

and Atta-ur-Rahman, Sajida Khanum and Peter Hütter

H. E. J. Research Institute of Chemistry, University of Karachi, Karachi-32, Pakistan
(Received 28 September 1988; accepted 1 March 1989)

Abstract

Ethyl-7,8,8a, 10,11,12a-hexahydro-12ahydroxyindolizino $[8,1-e f][1]$ benzazonine-6,13- ($5 \mathrm{H}, 9 \mathrm{H}$) -dione sesquihydrate, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \frac{3}{2} \mathrm{H}_{2} \mathrm{O}, M_{r}$ $=353.42$, triclinic, $P 1, a=9.250$ (2), $b=13.366$ (3), $c=9.217$ (2) $\AA, \quad \alpha=97.786$ (3),$\quad \beta=119.590$ (3), γ $=70.726(3)^{\circ}, \quad V=934.8 \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.255 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71073 \AA, \mu=0.839 \mathrm{~cm}^{-1}$,

Fig. 1. View of leuconolam illustrating atom labelling and the chair conformation of the six-membered ring (N4, C5-C8, C19). The interplanar angle between the benzene ring (C13-C18) and dihydropyrrole (C1, C2, C3, N4, C19) is 55.6 (3) ${ }^{\circ}$ [in molecule $B: 57 \cdot 2$ (4) ${ }^{\circ}$.
$F(000)=378, T=293 \mathrm{~K}$. The final R value is 0.061 for 1646 significant $[I>3 \sigma(I)$] reflections. The alkaloid from the leaves of Rhazia stricta is built up by a

Table 1. Data-collection and structure-refinement parameters

Crystal shape	Small plates
Diffractometer used	CAD-4, Enraf-Nonius
Method of intensity measurement	$\theta / 2 \theta$.
No. and θ range of reflections for lattice parameters	25; 10-16 ${ }^{\circ}$
Method used for absorption correction	No correction
Maximum value of $(\sin \theta) / \lambda$ reached in intensity measurement	$0.639 \AA^{-1}$
Range of h, k and l	$0 \rightarrow 11,-17 \rightarrow 17,-11 \rightarrow 11$
Standard reflections	004, 122
Interval, standard reflections measured	$\mathbf{2 h , ~ n o ~ i n t e n s i t y ~ v a r i a t i o n ~}$
Total No. of reflections measured; θ range	4062; 27°
No. of observed reflections	1646 with $I>3 \sigma(I)$ [1690 not observed, 2372 with $I>1 \sigma(I)]$
Method used to solve structure	Direct methods (Sheldrick/ 1985)
Use of F or $F^{\mathbf{2}}$ in LS refinement	F
Method of locating H atoms	$\mathbf{H (C)}$ calculated in idealized positions with $d(\mathrm{C}-\mathrm{H})=0.95 \AA$, included in structure-factor calculation
Weighting scheme	$1 / \sigma^{2}$
Parameters refined	203
Value of R	0.061
V alue of $w R$	0.062
Ratio of max. LS shift to e.s.d. ($4 / \sigma$)	0.0005
Max. height in final $\boldsymbol{U F}$ map	$0.280 \mathrm{e} \mathrm{A}^{-3}$
Error in an observation of unit weight	0.875
Secondary-extinction coefficient	2.558 (1) $\times 10^{-7}$ (Zachariasen, 1963)
Source of atomic scattering factors	International Tables for X-ray Crystallography (1974)
Computer used	DEC PDP 11/60
Programs used	SDP (B. A. Frenz \& Associates Inc., 1985)

Crystal shape

Method of intensity measurement
No. and θ range of reflections
Method used for absorption correction aximum value of $(\sin \theta) / \lambda$
reached in intensity measurement
Range of h, k and l
Standard reflections
Interval, standard reflections measured
otal No. of reflections measured;

$$
\theta \text { range }
$$

No. of observed reflections

Method used to solve structure Use of F or $F^{\mathbf{2}}$ in LS refinement

Weighting scheme
Parameters refined
alue of R
Value of $w R$
Ratio of max. LS shift to e.s.d. (Δ / σ)
Error in an observation of unit weight
Secondary-extinction coefficient

Computer used
Programs used
Small plates
CAD-4, Enraf-Nonius
$\theta / 2 \theta$
$25 ; 10-16^{\circ}$
No correction
$0 \rightarrow 11,-17 \rightarrow 17,-11 \rightarrow 11$
$\mathbf{2 h}$, no intensity variation

4062; 27°

1989 International Union of Crystallography

Table 2. Positional parameters and isotropic thermal parameters $B\left(\AA^{2}\right)$

	\boldsymbol{x}	y	z	B
Molecule A				
03	0.420	0.552	0.705	4.9 (1)
011	0.1471 (9)	0.4211 (6)	0.8878 (9)	$6 \cdot 6$ (2)
019	0.6203 (7)	0.2119 (5)	0.6198 (7)	$4 \cdot 2$ (1)
N4	0.5728 (8)	0.3741 (6)	0.7552 (8)	3.7 (1)
N12	0.0580 (9)	0.3196 (6)	0.6673 (9)	$4 \cdot 6$ (2)
Cl	0.3393 (9)	0.3060 (7)	0.604 (1)	$3 \cdot 3$ (2)
C2	0.280 (1)	0.4119 (7)	0.593 (1)	$4 \cdot 0$ (2)
C3	0.423 (1)	0.4559 (7)	0.685 (1)	4.3 (2)
C5	0.750 (1)	0.3781 (8)	0.855 (1)	$5 \cdot 2$ (2)
C6	0.829 (1)	0.3168 (9)	1.018 (1)	5.6 (2)
C7	0.804 (1)	0.2076 (8)	0.982 (1)	4.8 (2)
C8	0.611 (1)	0.2079 (7)	0.876 (1)	$3 \cdot 8$ (2)
C9	0.515 (1)	0.2613 (7)	0.977 (1)	4.3 (2)
C10	0.336 (1)	0.2470 (8)	0.922 (1)	4.9 (2)
C11	0.177 (1)	0.3339 (8)	0.825 (1)	$5 \cdot 1$ (2)
C13	$0 \cdot 104$ (1)	0.2374 (7)	0.566 (1)	3.9 (2)
C14	0.2376 (9)	0.2316 (6)	0.5341 (9)	$3 \cdot 2$ (2)
C15	0.275 (1)	0.1502 (7)	0.433 (1)	4.3 (2)
C16	0.185 (1)	0.0767 (9)	0.374 (1)	5.8 (3)
C17	0.058 (1)	0.0840 (9)	0.411 (1)	5.6 (3)
C18	0.015 (1)	0.1617 (8)	0.506 (1)	5.4 (3)
C19	0.538 (1)	0.2705 (7)	0.712 (1)	3.4 (2)
C81	0.611 (1)	0.0931 (8)	0.835 (1)	4.5 (2)
C82	0.685 (1)	0.0196 (9)	0.984 (1)	6.7 (3)
Molecule B				
O203	0.7247 (8)	0.4513 (5)	0.4374 (8)	5.5 (2)
0211	0.8547 (8)	0.5765 (6)	$0 \cdot 1143$ (8)	5.7 (2)
0219	0.4540 (7)	0.7926 (5)	0.4526 (7)	4.3 (1)
N204	0.6745 (8)	0.6286 (6)	0.4962 (8)	$4 \cdot 1$ (2)
N212	0.5847 (9)	$0 \cdot 6842$ (6)	-0.0384 (9)	4.4 (2)
C201	0.5002 (9)	0.6986 (6)	0.226 (1)	$3 \cdot 3$ (2)
C202	0.544 (1)	0.5934 (7)	0.224 (1)	4.0 (2)
C203	0.654 (1)	0.5474 (7)	0.391 (1)	4.1 (2)
C205	0.775 (1)	0.6217 (9)	0.678 (1)	5.7 (3)
C206	0.907 (1)	0.6800 (9)	0.733 (1)	5.9 (3)
C207	0.819 (1)	0.7895 (8)	0.650 (1)	4.7 (2)
C208	0.720 (1)	0.7920 (7)	0.458 (1)	$3 \cdot 5$ (2)
C209	0.852 (1)	0.7350 (7)	0.394 (1)	3.9 (2)
C210	0.796 (1)	0.7519 (7)	0.209 (1)	$4 \cdot 2$ (2)
C211	0.747 (1)	0.6654 (7)	0.093 (1)	$4 \cdot 2$ (2)
C213	0.440 (1)	0.7682 (7)	-0.042 (1)	$4 \cdot 2$ (2)
C214	0.393 (1)	0.7737 (7)	0.083 (1)	3.4 (2)
C215	0.241 (1)	0.8557 (8)	0.070 (1)	4.7 (2)
C216	0.152 (1)	0.9281 (9)	-0.063 (1)	5.5 (3)
C217	0.201 (1)	0.923 (1)	-0.179 (1)	6.9 (3)
C218	0.343 (1)	0.8436 (9)	-0.173 (1)	$5 \cdot 6$ (3)
C219	0.5855 (9)	0.7310 (6)	0.4091 (9)	$3 \cdot 2$ (2)
C281	0.623 (1)	0.9078 (7)	0.392 (1)	4.4 (2)
C282	0.741 (1)	0.9744 (9)	0.430 (1)	5.6 (3)
Solvent (aq)				
031	0.5070 (8)	0.3256 (5)	0.3471 (8)	$5 \cdot 2$ (2)
032	$0 \cdot 2538$ (8)	0.6732 (5)	0.4098 (8)	$5 \cdot 1$ (2)
033	0.1966 (9)	0.4987 (6)	0.1922 (9)	$6 \cdot 5$ (2)

benzene ring ortho disubstituted with a 4,5 -dihydro-5-hydroxy-2-oxo-pyrrol-1,4,5-triyl unit and an $\mathrm{N}(\mathrm{CO}) R$ - unit forming a twelve-membered ring.

Experimental. The alkaloid leuconolam was isolated from the plant Rhazia stricta (Decaisne), which has high repute in the indigenous system of medicine as a therapeutic agent in fever and chronic rheumatism. Goh, Wei \& Ali (1984) previously reported the isolation of the same alkaloid from the Malaysian plant Leuconitis griffithii. A colorless single crystal of approximate dimensions $0.05 \times 0.20 \times 0.20 \mathrm{~mm}$ was mounted on a glass fiber. Buerger precession diagrams showed a triclinic crystal system. Structure solution was successful only in the non-centrosymmetric space group $P 1$, later confirmed by the presence of twice the

Table 3. Selected distances (\AA) and angles (${ }^{\circ}$) with e.s.d.'s

O3	C3		1.27 (1)	0203	C203		1.26 (1)
011	C11		1.24 (1)	0211	C211		1.24 (2)
019	C19		1.41 (1)	O219	C219		1.43 (1)
N4	C3		1.356 (9)	N204	C203		1.35 (1)
N4	C5		1.44 (1)	N204	C205		1.46 (1)
N4	C19		1.48 (1)	N204	C219		1.45 (2)
N12	C11		1.37 (2)	N212	C211		1.354 (9)
N12	C13		1.44 (1)	N212	C213		1.42 (1)
C1	C2		1.34 (1)	C201	C202		1.33 (1)
C1	C14		1.46 (1)	C201	C214		1.46 (1)
C1	C19		1.53 (1)	C201	C219		1.54 (2)
C2	C3		1.45 (1)	C202	C203		1.44 (1)
C3	N4	C5	128.3 (8)	C9	C10	C11	118 (2)
C3	N4	C19	111.3 (7)	011	C11	N12	118.5 (7)
C5	N4	C19	$120 \cdot 3$ (6)	011	C11	C10	$120 \cdot 6$ (8)
C11	N12	C13	121.6 (7)	N12	C11	C10	120.9 (9)
C2	C1	C14	127.9 (7)	N12	C13	C14	$120 \cdot 6$ (9)
C2	CI	C19	109.2 (8)	N12	C13	C18	118 (2)
C14	C1	C19	122.9 (7)	C14	C13	C18	121.0 (9)
CI	C2	C3	110.4 (7)	C1	C14	C13	121.8 (8)
O3	C3	N4	122.9 (8)	C1	C14	C15	120.4 (9)
O3	C3	C2	129.3 (6)	C13	C14	C15	117.9 (9)
N4	C3	C2	107.9 (8)	C14	C15	C16	120 (2)
N4	C5	C6	108 (2)	C15	C16	C17	120 (2)
C5	C6	C7	109.6 (9)	C16	C17	C18	122 (1)
C6	C7	C8	114.9 (7)	C13	C18	C17	119 (1)
C7	C8	C9	108.5 (8)	019	C19	N4	110.2 (9)
C7	C8	C19	105.4 (9)	019	C19	C1	111.2 (6)
C7	C8	C81	108.0 (6)	019	C19	C8	109.2 (6)
C9	C8	C19	$112 \cdot 6$ (6)	N4	C19	C1	101.2 (6)
C9	C8	C81	113 (1)	N4	C19	C8	$108 \cdot 6$ (6)
C19	C8	C81	108.8 (8)	C1	C19	C8	116.0 (9)
C8	C9	C10	118.8 (7)	C8	C81	C82	115.4 (8)
C203	N204	C205	127.1 (8)	C209	C210	C211	118 (1)
C203	N204	C219	112.7 (7)	O211	C211	N212	119.2 (9)
C205	N204	C219	$120 \cdot 2$ (7)	O211	C211	C210	120.9 (7)
C211	N212	C213	122.4 (7)	N212	C211	C210	119.8 (7)
C202	C201	C214	127.9 (7)	N212	C213	C214	$120 \cdot 2$ (8)
C202	C201	C219	108.0 (7)	N212	C213	C218	119 (2)
C214	C201	C219	124.2 (7)	C214	C213	C218	120.3 (8)
C201	C202	C203	$111 \cdot 1$ (8)	C201	C214	C213	$120 \cdot 6$ (7)
O203	C203	N204	$124 \cdot 3$ (7)	C201	C214	C215	120.7 (9)
O203	C203	C202	128.9 (8)	C213	C214	C215	118.6 (8)
N204	C203	C202	$106 \cdot 8$ (7)	C214	C215	C216	118 (2)
N204	C205	C206	109 (2)	C215	C216	C217	123 (1)
C205	C206	C207	$110 \cdot 1$ (7)	C216	C217	C218	121 (2)
C206	C207	C208	115.4 (8)	C213	C218	C217	120 (1)
C207	C208	C209	108.8 (6)	O219	C219	N204	110.6 (8)
C207	C208	C219	$106 \cdot 0$ (9)	O219	C219	C201	$110 \cdot 2$ (6)
C207	C208	C281	109.4 (8)	O219	C219	C208	108.7 (7)
C209	C208	C219	$110 \cdot 6$ (8)	N204	C219	C201	101.5 (6)
C209	C208	C281	112.1 (9)	N204	C219	C208	109.4 (6)
C219	C208	C281	$110 \cdot 0$ (6)	C201	C219	C208	116.3 (9)
C208	C209	C210	118.6 (6)	C208	C281	C282	114.7 (7)

same enantiomer. However, no attempt was made to determine absolute configuration as it seemed to be impossible (Jones, 1984). To get a better reflection/parameter ratio, all non-H atoms were assigned only individual isotropic thermal parameters in the final full-matrix least-squares refinement. More details of the intensity-data collection, structure solution and refinement are listed in Table 1. Final atomic coordinates are given in Table 2, distances and angles in Tables 3 and 4.* The two independent molecules A and B in the unit cell have the same configuration and structural features.

[^0]Table 4. Intermolecular hydrogen bonds $\mathrm{O}(a q) \cdots \mathrm{O}$

031..O19	2.67 (1) \AA	O19...O31...O203	$106.5(3)^{\circ}$
O31...O203	2.79 (1)		
032...O3	2.797 (7)	O3..O32 $\ldots 0219$	$106 \cdot 6$ (2)
O32 \cdots O219	2.68 (1)		
033..O11	2.72 (1)	O11..033..0211	$97 \cdot 3$ (3)
O33...0211	$2 \cdot 72$ (1)		

A SCHAKAL (Keller, 1988) plot of molecule A is shown in Fig. 1.

Related literature. An orthorhombic phase of leuconolam. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was reported by Wei, Ali, Goh, Sinn \& Butcher, 1986).

We thank Professor G. M. Sheldrick for helpful discussion.

References

B. A. Frenz \& Associates Inc. (1985). Structure Determination Package, version 2.2. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
Goh, S. H., Wei, C. \& Ali, A. R. M. (1984). Tetrahedron Lett. 25, 3483-3484.
International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Jones, P. G. (1984). Acta Cryst. A40, 660-662.
Keller, E. (1988). SCHAKAL. Univ. of Freiburg, Federal Republic of Germany.
Sheldrick, G. M. (1985). Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Wei, C., Ali, A. R. M., Goh, S. H., Sinn, E. \& Butcher, R. J. $_{\text {I }}$ (1986). Acta Cryst. C42, 349-351.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1989). C45, 1260-1261

A Tetramethylethano-Bridged Difulvene

By Mark S. Erickson, Mark L. McLaughlin* and Frank R. Fronczek
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 19 September 1988; accepted 20 February 1989)

Abstract

Dimethyl-2,3-bis[3-(1-methylethylidene)-cyclopenta-1,4-dien-1-yl]butane, $\mathrm{C}_{22} \mathrm{H}_{30}, \quad M_{r}=294 \cdot 5$, monoclinic, $P 2_{1} / c, a=7.144$ (2), $b=19.698$ (2), c $=7.449$ (3) $\AA, \quad \beta=117.51(2)^{\circ}, \quad V=929.8$ (9) \AA^{3}, Z $=2, \quad D_{x}=1.052 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu$ $=0.55 \mathrm{~cm}^{-1}, F(000)=324, T=297 \mathrm{~K}, R=0.063$ for 1120 data having $I>1 \sigma(I)$. The cyclopentadienylidene ring exhibits the expected localized valence-bond alternation within the five-membered ring. The bond angle exo to the exocyclic double bond is 114.8 (2) ${ }^{\circ}$. Due to the centrosymmetry of the molecule, the fulvenes are anti and the methyl groups are all gauche to the fulvene rings. The cyclopentadienylidene ring is planar with maximum deviation of 0.002 (2) \AA.

Experimental. The title compound is prepared by treatment of the proton-shift isomers of 2,3 -bis $(2,4-$ cyclopentadien-1-yl)-2,3-dimethylbutane with excess acetone in methanol catalyzed by pyrrolidine. Yellow crystals, dec. 417 K , suitable for single-crystal X-ray diffraction were crystallized from ethyl acetate with slow cooling from reflux temperature. All standard spectroscopic measurements can be interpreted in terms of the X-ray structure determination (Erickson, McLaughlin \& Fronczek, 1989).

[^1]0108-2701/89/081260-02803.00

Intensity data were obtained from an irregular fragment of dimensions $0.15 \times 0.23 \times 0.33 \mathrm{~mm}$ mounted in a random orientation on an Enraf-Nonius CAD-4 diffractometer. Cell dimensions were determined at 297 K by a least-squares fit to setting angles of 25 reflections having $22>2 \theta>18^{\circ}$. The θ values were derived from measurements at $\pm 2 \theta$. One quadrant of data having $2<2 \theta<55^{\circ}, \quad 0 \leq h \leq 9, \quad 0 \leq k \leq 25$, $-9 \leq l \leq 9$ was measured using graphite-monochromated Mo $\mathrm{K} \mathrm{\alpha}$ radiation. 2128 reflections were measured. The $\omega-2 \theta$ scans were made at speeds ranging from 0.45 to $4.0^{\circ} \mathrm{min}^{-1}$ to measure all significant data with approximately equal precision. Three standard reflections ($100,060,002$), measured every 10000 s of exposure time, exhibited only random fluctuations of less than $\pm 2 \%$ in intensity during data collection. Data included corrections for background, Lorentz, and polarization. Absorption was negligible.

The space group was determined by systematic absences $h 0 l$ with l odd and $0 k 0$ with k odd. The structure was solved by direct methods and refined by full-matrix least squares based upon F, with weights $w=4 F_{o}{ }^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}{ }^{2}\right)^{2}\right]^{-1}$ using the Enraf-Nonius SDP (Frenz, 1985), scattering factors of Cromer \& Waber (1974), anomalous coefficients of Cromer (1974), and 1120 data having $I>1 \sigma(I)$. Non-H atoms were refined anisotropically; the H atoms were located © 1989 International Union of Crystallography

[^0]: * Lists of structure factors, H -atom coordinates, further bond distances and angles, and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51809 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: *To whom correspondence should be addressed.

